Differential Equations Definitions

- A **differential equation** is an equation with derivatives.
 - The solution of a differential equation is a function.
- There are two major types of differential equations.
 - **ODE**, Ordinary Differential Equation
 - An ODE is a diff eq with just one independent variable and only ordinary derivatives.
 - In this course, we study only ODE’s. From now on, when we say “differential equation” or “diff eq”, we mean an ODE.
 - **PDE**, Partial Differential Equation
 - An PDE is a diff eq with more than one independent variable and has partial derivatives.
- The **order of a differential equation** is the order of the highest order derivative in the differential equation.
- The **normal form** of a differential equation has the highest order derivative by itself on the left hand side of the equation.

- A **separable differential equation** is a first order diff eq of the form
 \[y' = g(x) \cdot h(y) \]
- A **linear differential equation** is a diff eq of the form
 \[a_n(x) y^{(n)} + \ldots + a_2(x) y'' + a_1(x) y' + a_0(x) y = g(x) \]
 - Each term on the left hand side is \(y \) or one of its derivatives times a **coefficient function** of \(x \). The right hand side can be any function of \(x \).
 - In linear models, the left hand side is the physical system, \(g(x) \) is the **forcing function**, and the solution is the **response** of the system.
 - \(a_n(x) \) is called the **leading coefficient function**.
 - The zeros of the leading coefficient function \(a_n(x) \) are called **singular points**. Things go haywire at singular points. Singular points won't be in the domain of any solution.
 - A linear diff eq is called "linear" because the left hand side constitutes a “linear operator” of \(y \).

- The **solution of differential equation** is a function along with an **interval of definition** on which the function solves the diff eq.
 - The solution must be continuous and differentiable on the interval of definition.
 - Strictly speaking, a complete solution must specify an interval of definition along with the function. In practice, the interval of definition is often overlooked or not mentioned.
- A **response curve** is the solution of a diff eq in the context of a model of a physical system.
 - Because of this, we can say safely that the solution of a diff eq must be the possible response curve of some physical system. Hence, the solution of a diff eq must be a
continuous and differentiable function on a single interval. (Anything we encounter in real life is continuous and differentiable and doesn’t jump time intervals.)

- The function \(y = 0 \) is called the **trivial solution** when it solves the diff eq.
 - For example: The diff eq \(y' + y = 0 \) has the trivial solution since the function \(y = 0 \) solves the diff eq.

- An **explicit function** is a function defined explicitly by a formula.
- An **implicit function** is a function defined implicitly by an \(x,y \) equation. The \(x,y \) equation itself is called the **implicit equation** or the **implicit curve**.
 - Every \(x,y \) equation defines a **relation** which graphs as a curve in the \(x,y \) plane.
 - If you can enclose in a rectangle a piece of the curve that looks like a function, then that function is “implicitly defined” by the relation.
 - For example, parts of the implicit curve \(x - y^2 = 0 \) (sideways parabola) implicitly define functions of \(x \), including the explicit functions \(y_1 = \sqrt{x} \) and \(y_2 = -\sqrt{x} \).

- An **explicit solution** is a solution with an explicit function.
- An **implicit solution** is a solution with an implicit function.
 - The relation \(x^2 + y^2 = 1 \) is an implicit solution of the diff eq \(y' = -x/y \) because all the functions \(y(x) \) implicitly defined by \(x^2 + y^2 = 1 \) solve the diff eq.
 - In most cases we state an implicit solution without stating an interval of definition.

- An **\(n \)-parameter family of solutions** has \(n \) parameters (arbitrary constants) usually labeled \(c_1, c_2, \ldots, c_n \). For example, \(y = c_1 \cos t + c_2 \sin t \) is a two parameter family of functions.
- A **particular solution** has no parameters.
 - You get particular solution from an \(n \)-parameter family by setting the values of the parameters \(c_1, c_2, \ldots, c_n \). A particular solution is a particular member of the family of solutions.
 - For example, \(x(t) = c_1 \cos t + c_2 \sin t \) is the two parameter family of solutions of the diff eq \(x'' + x = 0 \). The function \(x(t) = 2 \cos t - 3 \sin t \) is a particular solution from that two parameter family where \(c_1 = 2 \) and \(c_2 = -3 \).
- A **singular solution** is a solution that's not the member of a parametrized family of solutions.
 - For example, \(y = \left(\frac{1}{4} x^2 + c_1 \right)^2 \) is a one parameter family of solutions of the diff eq \(y' = x \sqrt{y} \) (verify). Also \(y = 0 \) solves the diff eq (verify). But \(y = 0 \) is not a member of the family (verify: there's no value of \(c_1 \) that gives you \(y = 0 \)). So, \(y = 0 \) is a singular solution.
 - Singular solutions often "drop out" of calculations when dividing. For example, when solving the previous diff eq \(y' = x \sqrt{y} \) by separation of variables, we lose \(y = 0 \) when we divide by \(\sqrt{y} \). (Verify by solving the diff eq.)
A **general solution** is a family of functions that represents all possible solutions to a diff eq.
- If a diff eq has a general solution, it will have no singular solutions.
- Solving a linear diff eqs yields a general solution.
- Solving separable diff eqs often does not yield a general solution.

Initial Value Problem (IVP)
- An **nth order Initial Value Problem** is an n-th order diff eq along with n **initial conditions**.
- The n initial conditions are on y and its first \(n - 1 \) derivatives:
 \[y(x_0), y'(x_0), y''(x_0), \ldots, y^{(n-1)}(x_0). \]
- The initial conditions are all evaluated at the same **initial point** \(x_0 \).
- Solving an IVP happens in two stages
 1. Solve the diff eq to get the \(n \)-parameter family of solutions.
 2. Apply the initial conditions to find the particular solution.
- The solution to an \(n \)th order IVP is a particular solution that belongs to the \(n \)-parameter family of solutions.
- Solutions to **Linear IVPs** will often have these features.
 - **transient terms** - any term whose value diminishes as \(t \to \infty \).
 - **steady state terms** - any term that’s not a transient term.
 - The **transient solution** is all the transient terms of the solution.
 - The **steady state solution** is all the steady state terms of the solution.
 - For example, the linear IVP \(y' + 2y = 8 \), \(y(0) = 1 \) has the particular solution \(y = 4 - 3e^{-2t} \) (verify). The solution response curve has a transient term of \(-3e^{-2t} \) and a steady state of \(y = 4 \).

![Response Curve of the IVP](image)