Types of Limits

Function	$f(a) = b$	There's a solid dot at (a,b).
Finite Limits	\[
\lim_{{x \to a}} f(x) = b		
\]		
	\[
\lim_{{x \to a^-}} f(x) = b		
\]		
	\[
\lim_{{x \to a^+}} f(x) = b		
\]		
	\[
\begin{align*}		
\text{f approaches the point } (a,b) & \text{ from both sides} \\		
\text{f approaches the point } (a,b) & \text{ from the left side} \\		
\text{f approaches the point } (a,b) & \text{ from the right side}		
\end{align*}		
\]		
	There is an open dot or a solid dot at (a,b)	
Infinite Limits	\[
\lim_{{x \to a}} f(x) = \infty		
\]		
	\[
\lim_{{x \to a^-}} f(x) = -\infty		
\]		
	\[
\begin{align*}		
\text{f approaches vertical asymptote } x = a & \text{ and goes up} \\		
\text{f approaches vertical asymptote } x = a & \text{ and goes down}		
\end{align*}		
\]		
Limits at Infinity	\[
\lim_{{x \to \infty}} f(x) = L		
\]		
	\[
\lim_{{x \to -\infty}} f(x) = L		
\]		
	\[
\begin{align*}
\text{f approaches horizontal asymptote } y = L & \text{ off to the right} \\
\text{f approaches horizontal asymptote } y = L & \text{ off to the left}
\end{align*}
\]