Suggested problems

Matrix algebra properties

P1: If A is a 2×2 matrix with $|A| = 3$, what are the following?

 (a) $|-5A|$
 (b) $|4A^t|$
 (c) $|(A^3)^{-1}|$

P2: Suppose A and B are 3×3 matrices with $|A| = 5$, $|B| = -3$. What are the following determinants?

 (a) $|2A^2B|$
 (b) $|(AB)^t|$
 (c) $|4AB^{-1}|$
 (d) $|(4AB)^{-1}|$

P3: Let A be a square matrix. Prove that if there exists a positive integer n such that $A^n = 0$ (that’s the zero matrix, by the way), then $|A| = 0$.

P4: Prove that if A and B are square matrices of the same size, then $|AB| = |BA|$.

P5: Prove that if A, B, and C are square matrices of the same size, then $|ABC| = |A||B||C|$.

P6: Construct a counterexample that shows that in general, $|A + B| = |A| + |B|$ is a false statement.