Calculus of multivariable functions

Limits, part 3: the delta-epsilon definition

Example 1: Verifying a limit using the definition

Use the definition of the limit to verify that

\[\lim_{(x,y) \to (1,2)} x + y = 3 \]

We need to find a \(\delta \) such that \(|f(x, y) - L| < \epsilon \) whenever \(0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \). We generally proceed by working backwards and reversing the steps (which requires a bit of caution, since we’re working with inequalities).

Start by considering

\[|f(x, y) - L| = |x + y - 3| \]

and do a little rearranging. Since we’re trying to get to an expression that has the quantities \((x - 1)\) and \((y - 2)\), try

\[|x + y - 3| = |(x - 1) + (y - 2)| \leq |x - 1| + |y - 2| \quad \text{(triangle inequality)} \]

So

\[|x + y - 3| \leq \sqrt{(x - 1)^2 + (y - 2)^2} \]

Now, this is where the caution comes in - it would be nice if \(\sqrt{(x - 1)^2 + (y - 2)^2} \) were less than \(\sqrt{(x - 1)^2 + (y - 2)^2} \) ... but it isn’t. However, we can say that

\[\sqrt{(x - 1)^2} \leq \sqrt{(x - 1)^2 + (y - 2)^2} \]

\[\sqrt{(y - 2)^2} \leq \sqrt{(x - 1)^2 + (y - 2)^2} \]

(in both cases, we’ve simply added a non-negative term under the radical, giving a larger quantity), and therefore

\[|x + y - 3| \leq \sqrt{(x - 1)^2 + (y - 2)^2} \]

This gives us what we want, and we can go forwards - suppose \(\delta = \frac{\epsilon}{2} \). Then \(\sqrt{(x - 1)^2 + (y - 2)^2} < \delta \) implies that \(2\sqrt{(x - 1)^2 + (y - 2)^2} < 2(\frac{\epsilon}{2}) \), and, therefore,

\[|x + y - 3| < \epsilon \]

This satisfies the definition of the limit: Given any \(\epsilon > 0 \), there exists a \(\delta > 0 \) (in this case, \(\delta = \frac{\epsilon}{2} \)) such that \(0 < \sqrt{(x - 1)^2 + (y - 2)^2} < \delta \) implies \(|f(x, y) - 3| < \epsilon \).