<table>
<thead>
<tr>
<th>THE “STICK IT IN A MATRIX AND RREF IT” LIST</th>
<th>Set up</th>
<th>rref the augmented matrix</th>
</tr>
</thead>
</table>
| **Is a vector a linear combination of a given set?** | \(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m = \mathbf{v} \) | • unique or infinite – YES
• no solution - NO |
| **Express a vector as a linear combination of a given set.** | Same as above. | Just continue to write the solution. |
| **Is a set of vectors linearly independent or dependent?** | \(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m = \mathbf{0} \) | rref the augmented matrix
• unique – YES
• infinitely many - NO |
| **Does a set span \(\mathbb{R}^n \)?** | \(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m = I \) | rref the augmented matrix
• solution for every right hand side (column of I) – YES
• no solution - NO |
| **Is a set a basis for \(\mathbb{R}^n \)?** | Fast check setup
\(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m \)
(just the coefficient matrix)
Detailed answer – check independence and span | rref the coefficient matrix
• identity – YES
• not identity – NO
 May also be able to use relevant theorems (must have \(n \) vectors in a basis for \(\mathbb{R}^n \)) |
| **Does a set span a subspace of \(\mathbb{R}^n \)?** | Set up
\(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_m \mathbf{v}_m = \mathbf{V} \)
where \(\mathbf{V} \) is a matrix of vectors that are known to generate the space. | rref the augmented matrix
• solution for every right hand side (column of \(\mathbf{V} \)) – YES
• no solution - NO |
| **Does a set form a basis for a subspace of \(\mathbb{R}^n \)?** | Check independence and span as above. | Make sure all vectors are actually in the space first, if easy to verify form. |
| **Does a set span / is it independent / is it a basis for a space other than \(\mathbb{R}^n \)?** (matrices, polynomials) | Write the equivalent \(\mathbb{R}^n \) vector problem and solve. (2 x 2 matrices \(\rightarrow \) \(\mathbb{R}^4 \) vectors, polys of degree 3 or less \(\rightarrow \) \(\mathbb{R}^3 \) vectors, etc.) | |
| **Basis for the row space of \(A \).** | rref(\(A \)). Non-zero rows are basis vectors. rank(\(A \)) = dimension of row space = number of non-zero rows. | Only time you’ll read the rows of a matrix as vectors. |
| **Basis for the column space of \(A \).** | rref(\(A^\top \)). Row space of \(A^\top \) (transpose) = column space of \(A \). | |