The cross product

Defining the cross product - suggested problems - solutions

P1: Suppose we have two vectors \mathbf{u} and \mathbf{v} in space, such that $||\mathbf{u}|| = 25$, $||\mathbf{v}|| = 17$, and the angle between \mathbf{u} and \mathbf{v} is 110°. What is the magnitude of the cross product? (Compute $||\mathbf{u} \times \mathbf{v}||$.) Why is it not possible to determine the direction, based on the given information?

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta = (25)(17) \sin 110^\circ \approx 399.4$$

We cannot determine direction (in any useful way - we know the direction is “perpendicular to both”) as we have no idea where \mathbf{u} and \mathbf{v} are pointed in space, so there is no way to apply the right hand rule.

P2: Compute the cross products $\mathbf{j} \times \mathbf{k}$ and $\mathbf{k} \times \mathbf{i}$. In each case, be sure to sketch the vectors on a right handed 3D coordinate system, and use the right hand rule to determine the correct direction.

$$\mathbf{j} \times \mathbf{k} = \mathbf{i}$$

Fingers along \mathbf{j}, palm up so you can curl towards \mathbf{k}, and your thumb will be sticking out along the positive x axis, giving the unit vector \mathbf{i}.
k \times i = j

Fingers along \(k \), palm forward so you can curl towards \(i \) out of the page, and your thumb will be pointed along the positive \(y \) axis, giving the unit vector \(j \).

Notice how if it had been \(i \times k \), you’d have had to turn your hand the other way, and would get \(-j\). Reversing the order of the cross product reverses the sign.

P3: Let \(u = 3i - 2j + 0k \), and \(v = i + 4j + 0k \).

(a) Note both vectors lie in the \(xy \) plane; sketch them.

(b) Compute \(||u||, ||v||, \) and \(u \cdot v \).

\[
||u|| = \sqrt{13} \quad ||v|| = \sqrt{17} \quad u \cdot v = (3)(1) + (-2)(4) + (0)(0) = -5
\]

(c) Compute the angle between \(u \) and \(v \) from the dot product formula: \(\cos \theta = \frac{u \cdot v}{||u|| ||v||} \).

\[
\cos \theta = \frac{-5}{\sqrt{13}\sqrt{17}} \quad \theta \approx 109.65^\circ
\]
(d) Use the preceding to compute $||u \times v||$. What is $||v \times u||$?

$$||u \times v|| = ||u|| \cdot ||v|| \sin \theta = \sqrt{13} \sqrt{17} \sin 109.65^\circ = 14$$

A point of interest here is that it works out to be exactly 14; if instead of calculating θ as a decimal approximation, you use the trig identity $\sin^2 \theta = 1 - \cos^2 \theta$, you have

$$||u|| \cdot ||v|| \sin \theta = \sqrt{13} \sqrt{17} \sqrt{1 - \left(\frac{-5}{\sqrt{13\sqrt{17}}} \right)^2}$$

$$= \sqrt{13} \sqrt{17} \sqrt{1 - \frac{25}{(13)(17)}}$$

$$= \sqrt{221} \sqrt{1 - \frac{196}{221}}$$

$$= \sqrt{196}$$

$$= 14$$

This is just generally more trouble than it’s worth :)

$$||v \times u|| = ||v|| \cdot ||u|| \sin \theta = ||u|| \cdot ||v|| \sin \theta = ||u \times v||$$

(they’re the same), and so $||v \times u|| = 14$ as well.

(e) Use your sketch and the right hand rule to determine the direction of $u \times v$. Does your thumb go into or out of the plane of the page? In a right handed coordinate system, “into” points down the negative z axis, and the unit direction vector \mathbf{n} is equal to $-\mathbf{k}$. “Out of” points up the positive z axis, and the unit direction vector \mathbf{n} is equal to \mathbf{k}.

Fingers along \mathbf{u} curling towards \mathbf{v} requires you to hold your hand with thumb pointing out of the plane of the page, so the direction vector is \mathbf{k}. One convention for indicating an “out” vector in a 2D sketch is to use a circle with a dot (like the pointy tip of an arrow coming out towards you):
(f) Write the vector \(\mathbf{u} \times \mathbf{v} \).

The vector \(\mathbf{u} \times \mathbf{v} \) is given by \((||\mathbf{u}|| ||\mathbf{v}|| \sin \theta)\mathbf{n} \): magnitude times direction. So

\[
\mathbf{u} \times \mathbf{v} = 14\mathbf{k} = <0, 0, 14>
\]

(g) Use your sketch and the right hand rule to determine the direction of \(\mathbf{v} \times \mathbf{u} \). Does your thumb go into or out of the plane of the page?

Fingers along \(\mathbf{v} \) curling towards \(\mathbf{u} \) requires you to hold your hand with thumb pointing into the page, so the direction vector is \(-\mathbf{k} \). One convention for indicating an “in” vector in a 2D sketch is to use a circle with a \(\times \) (like the tail end of an arrow moving away from you):

(h) Write the vector \(\mathbf{v} \times \mathbf{u} \).

\[
\mathbf{v} \times \mathbf{u} = ||\mathbf{v}|| ||\mathbf{u}|| \sin \theta \mathbf{n} = 14(-\mathbf{k}) = -14\mathbf{k} = <0, 0, -14>
\]
P4: Let $\mathbf{u} = <-1, 1, 0>$, $\mathbf{v} = <2, 3, 0>$. Find $\mathbf{u} \times \mathbf{v}$.

There's no shortcut to this yet; you need to go through all the steps in problem 3 to find that cross product. I'm just not listing them all out again! We will go through another formula to get the cross product; even if you know it already, take the geometric approach as above.

$$||\mathbf{u}|| = \sqrt{2} \quad ||\mathbf{v}|| = \sqrt{13} \quad \mathbf{u} \cdot \mathbf{v} = 1$$

$$\theta = \cos^{-1} \frac{1}{\sqrt{2}\sqrt{13}} \approx 78.69^\circ$$

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin 78.69^\circ = 5$$

Direction by right hand rule is into the page, so $\mathbf{n} = -\mathbf{k}$.

$$\mathbf{u} \times \mathbf{v} = ||\mathbf{u} \times \mathbf{v}|| \mathbf{n} = -5\mathbf{k} = <0, 0, -5>$$